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In this paper, a space—time finite element method for evolution problems that
is second-order accurate in both space and time is proposed. For convection domi-
nated problems, the elements may be aligned along the characteristics in space—time,
which results in a Crank—Nicolson method along the characteristics. The method is
also suitable as an alternative to other moving mesh methods for problems in de-
forming domains. Numerical examples dealing with diffusion and convection are
given.  © 2000 Academic Press
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1. INTRODUCTION

In previous work [6-9], | have suggested the use of a space—time finite element metho
convection—diffusion problems based on a time-Discontinuous Galerkin (DG) methoc
Jamet[12]. This version of the DG method, known as the Characteristic Streamline Diffus
(CSD) method, consists of aligning the element sides along the characteristic directior
space-time. It has been shown to have some good points from both a theoretical [14] ¢
practical [6] point of view. For an introduction to the CSD method, see the monograph
Chapter 19]. Essentially the same method has been independently proposed by Tez
and coworkers, who have used this approachin large-scale computations (see, e.g., [17

However, the CSD method has a drawback: the use of the lowest possible order of tem|
approximation leads to a variant of the backward Euler method along the character
direction, meaning that it is only a first-order method. While a first-order method alo
the characteristics may outperform a standard high-order method in many cases, it is
general situation insufficient. Higher order polynomial approximation, leading to varial
of the first subdiagonal Padipproximants, is prohibitively expensive to use. For this reasc
| instead suggest the use of continuous Galerkin methods, which are related to the diac
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Pad approximants. | shall focus on the lowest-order continuous Galerkin method, wt
is a Crank—Nicolson-type method, i.e., a one-step method of second order.

It must be noted that, while the exposition of the method relies heavily on the notior
characteristics, the method is not limited to convection—diffusion-type problems. It is &
suited to handling problems requiring deforming regions (e.g., large deformation proble
arbitrary Lagrangian—Eulerian problems, Stefan problems, flow problems with mov
parts, and interface tracking in general). The movement of the mesh does not have
connected to a physical velocity field.

Second-order time-accurate space—time finite element methods on moving meshes
been proposed earlier by Bonnerot and Jamet [2, 3]. Their approach is close to the
presented here in special cases; however, as far as | am aware, this is the first attem,
general approach which is independent of quadrature and allows for higher order app
mations of both the mesh movement velocity and the polynomial degree of approxima
in both space and time.

An outline of this paper is as follows: in Seati@ a linear model problem is introduced,
with the purpose of defining the method and its qualities. In Section 3, the space—time fi
element method introduced by Aziz and Monk [1] for the solution of the heat equatior
recalled. In Section 4 the method is defined and the effects of space—time orientation o
elements are discussed. In Section 6 the practical implementation is discussed. In Sec
some numerical examples are presented, and in Section 8 some concluding remartk
given.

2. PROBLEM FORMULATION

While the present method is applicable to any type of evolution problem, | will, for tf
purpose of introduction, focus on the linear convection—diffusion problem. The reason
this is simply that the question of how to move the nodes is not an issue in this case
natural choice is to let them move with the flow. For other problems, nodal motion
be an issue in itself, cf. [9]. Convection—diffusion also displays some of the computatic
difficulties encountered in more complex flow problems.

Consider thus first the numerical solution of the following model problem:

au .
g—i—c-Vu—V-(sVu):f iNnQ=Q x I,

u=20 onoQ x I, @
u(x,0) = ug in Q,

whereQ is a polygonal domain ifR? with boundary 2, | = (0, T) is a given time interval,
andcande > 0 are functions ofX, t) representing a given convection velocity and diffusior
coefficient, respectively. To avoid the complications associated with time-variable sp
domain, it is also assumed that

c=0 onog. (2)
(This is not a limitation of the method, however; for computations with moving boundar

using CSD, see, e.g., [7, 8].) Furthdr(x, t) is a given production term ana} is given
initial data.
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Equation (1) is written in Eulerian coordinates t), wherex refers to a certain fixed
location inR? andt is time. In Eulerian coordinatesi(x, t) is the concentration at the
space—time locatiorx(t) of a certain quantity convected by the velocity fie(d, t). Using
Eulerian coordinates, observers are fixed at poirits R? and measure the concentration
or velocity atx for different timest. Most of the work done in the field of computational
fluid dynamics is based on the use of Eulerian coordinates, but to understand the ber
of the space—time orientation along the characteristics it is helpful to consider instead
Lagrangian coordinates associated with the physics of problem (1).

The characteristics corresponding to thaterial derivative

a+cv
ot ’

in (1) are space—time curves, t) = (X(X, t), t), wherex(X, t) satisfies

% =c(x(X,1),t) t>0, -

x(X, 0) = X.

The coordinateg are the Eulerian coordinates aXidre the Lagrangian coordinates, where
X acts as a label identifying a particle which at time 0 is at locationX € R? and moves
according to the velocity field(x(X, t), t) so that its position at timeis given byx(X, t).
Alternatively, one may simply write = F (X, t), where it is understood that the mapping
F is given implicitly by (3).

Notice that, definingi(X, t) = u(x(X, t), t), by (3) and the chain rule,

ou  au
— =—+4c-Vu. 4
at at + “)
Thus, the convection equation,
au
— +c-Vu=f, 5
ot T 5)

in the Eulerian coordinates corresponding to taking=0 in (1), takes the simple form,

au —

i f (6)
inthe Lagrangian coordinat€x, t), Wheref_(x, t) = f (x(X, 1), t). Consequently, in global
Lagrangian coordinates the convection term disappears and the original partial differe
equation (5) reduces to a set of first-order ordinary differential equations with respec
t indexed byX. This fact is the driving force behind many numerical schemes for flui
mechanics problems. Most methods use the characteristics in an indirect manner, v
others, like the finite element method to be presented, are more directly linked to
Other examples of a direct incorporation of characteristics include the methods propc
by Pironneau [16] and by Hasbaeti al. [10] and also the characteristic Galerkin methoc
of Morton [15] and the semi-Lagrangian method ait€and Staniforth [4]. A difference
between these methods and the continuous Galerkin method is that the latter is basec
finite element discretization of both space and time, while the former methods are base
finite difference stencils along the characteristics that do not a priori take into account
fact that the characteristics may only be approximate.
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3. THE TIME-CONTINUOUS GALERKIN METHOD

First, the method will be described using a traditional nonoriented space—time m
For discretization in space and time, a continuous Galerkin method in space is empilc
in combination with a continuous method in time using an arbitrary polynomial ord
The temporal variation of the test functions will be one order lower than that of the tr
functions so that if a trial function is denoted the corresponding test function can be
written w = dv/dt. Aziz and Monk [1] were the first to analyze this method for paraboli
partial differential equations. However, the concept has been used earlier by a numb
authors (see, e.g., Hulme [11], Winther [19], and Zienkiewicz [20, Chapter 21.2]).

Attention will be focused on the simplest possible variant using a linear approximat
in both space and time in two dimensions, but the framework allows for an arbitrary or
of approximation. The method is based on a partitientp<t; < --- <ty =T of the total
time interval (Q T) into smaller time intervald,, = (t,_1, t), of lengthk, =t, —t,_1. Itis
assumed that there is given a fixed subdivisigrof Q into triangles, and the spad4 is
then defined by

Vh(R2)={v € C(§): v is linear inx on each triangl& in T,,, v =0 0nd}.

The corresponding space—time mestfor (0, T) is built from space—time “slabsg, =
Q x |,. Approximate solutiont) which are continuous, piecewise linear in space and tin
are sought. This means tHatg . |, belongs to the following space of functions defined ol
the slabs;:

Whn($) = {v(X, t): vis linear in time and e V,, for t fixed}.

The space of functionsdefined on the whole of the space—time domain is denotattibhy
ie.,

Wh(Q) = {v € C(Q) : vls, € Whn).

The method proposed in [1] may be formulated as followsnferl, 2, .. ., findU € Wy,
such that

U 9 5 9
/(+C~VU)dedt+/sVU-V<v>det=/ Y dadt  (7)
s \ ot ot S ot T

for all v € Whn.

Now, in spite of the fact thal) is continuous in time, it is computed stepwise in the
same way as in a one-step finite difference method. To ensure the temporal contiklity
the valueU (t,_;) is taken from the preceding time step (withy a suitable interpolation
of the initial data onto the mesh). This means that there is only one unknown in time,
value at the end of the time step. Since there is in fact only one test function igaimet
is constant), the right number of equations is obtained. The resulting scheme is clo
related to the classic Crank—Nicolson method (using a particular temporal mean valu
the right-hand side; see [1] for details).

4. THE SPACE-TIME-ORIENTED CHARACTERISTIC METHOD

Next, the space—time mesh will be defined; a piecewise linear approximation will be u
along space—time characteristics (and in space). The purpose of the space—time orien
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is to mimic the use of Lagrangian coordinates. Traditionally, one simply replaces the ac
¢ by an approximatiorm;,, followed by computing the convective derivative by differenc-
ing alongcy. This means that the numerical solution is by definition convected}, bgo
that, in effect, the original equation has been changed, and a consistency error has
introduced. In the present method, on the other hand, the space—time elements ar
formed according tay, which has a similar effect, but it is the original equation that is dis
cretized. Thus, there will be no consistency error due to the approximation of the convec
velocity.

4.1. Definition of the Method

Recall the definition of the global Lagrangian coordinates in (3) and the correspond
mapx = F (X, t). Let us, for ease of presentation, assume that this map is a bijection for
t € 1. One can then proceed as follows: denotelhy: 2 x | the image of2 x | under
F~1, divide Q into slabsS, and let the spaceé,(Q), Win(Sh), andWh (Q) be defined as
in the previous section.

For simplicity, | consider only the case whene [V (2)]2 is piecewise constant in time.
The numerical examples of Section 7 show that the choicg affects the accuracy of the
resulting schem@A priori the nodal positions are known only at the beginning of the tim
step, but the choice a, as the spatial interpolant ofat the beginning of the time step is
not sufficient to ensure second-order temporal accuracy. As the mesh deforms, the n
will occupy new positions, X1, . .., S0 it is natural to define, on each space—time slab,
local Lagrangian coordinaté, = x,,_;. A second-order approximation of the deformatior
X(t) is given by Heun’s method; define

)?n = Xn + I(nC(Xna th-1)

and compute, by

Xn = Xn + %(C(Xn, th—1) + Cc(Xn, tn)).

Consequently, a natural choice fg(X,,) is the spatial interpolant of the velocity field
C(Xn) = (C(Xp, th-1) + (Xn, tn)) /2, (8)

constant over each time step.
To proceed, define on each slab the corresponding local Eulerian coordinasethe
solution of
0Xn ~
— =Ch(X only,
at h( n) n (9)
Xn(Xn, th=1) = X,

so that

Xn = Xn + Ch(Xp) (t —th_1),

and denote the corresponding mappingilayéh — S, = Fn(Sy). The space of functions
in which the approximate solution of (1) is sought is then defined by compositiorFith
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so that
WS = {vx, ©) = (Frix, 1) : 9 € Whn(S0)}
and
W (Q) = {v e C(Q):vls, € Win}.

The method based on the spat€" can now be formulated as follows: Fitdle Ws"
suchthatfon=1,2,...,

au '
/<+C~VU)thdet+/ 8VU~V(th)det=/ fDpvdQ2dt (10)
s \ 9t S S
for all v e Ws", where

Dhv = 2—: +ch- Vo
denotes the approximate material derivativewofAgain, note that this effectively yields
only one test function, sincByv is constant along;,, and consequently (10) is the natural
counterpartto (7). Itis important to note that the same idea can be usauyfdnoice ofc,,
and the method is thus possible to use also on moving grids for other applications (inter
tracking, ALE methods, etc.).

The space—time mesh corresponding to the approximative convective velocity con:
of elements that are inclined in space—time with slope given by the velgcifepending
on the regularity of the velocity field, it is possible to maintain matching meshes over:
certain length of time, until the mesh is so distorted that this is no longer feasible. Wi
the mesh becomes too distorted, a new triangulatiaf ofust be introduced, and drp-
projection from the old to the new mesh must be performed. Since a second-order tem
accuracy is expected, this may be bad news: too many projections will reduce the ord
approximation. However, given some regularitycpthe same number of projectiopsr
unittimeis expected as the time-step length is reduced, which still yields the right asympt
behavior. This is unlike the traditional characteristics-based finite element methods, w
one projection is performed each time step (e.g., [16]).

4.2. Effects of Space—Time Orientation

Next, (10) is rewritten in the local Lagrangian coordinatesspio see the effect of the
orientation. Extendin@y to S, by settingch (X, t) = ¢ (X) if x=F,(X, t), the chain rule
yields

2 evu= o Votrc—cy .V
- . V= — . v — . v
at T "
v .. v R
:E‘F(C_Ch)'JanXUE§+a'vxva (11)

where

X
(X, 1) = 87(X’t)
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and
a=J7T@e—en.

With ¢, selected according to (8), one may expect to haveC(k2 + h?) if ¢ is smooth.
Reformulating (10) in X, t) coordinates the method takes the following form: et
1,2, ..., findU =U|g € W, such thavd € W,

aU A\ 99 .
/<+&~VXU>U|Jn|dS2dt
s \ ot ot

~ ~ [ 0D ~ ~0D ~
+/ éVU~V<U>|Jn|det=/ £2Y 3, dQ ot (12)
JS at JS ot

whereV = J-1V,.

Comparing (10) and (12), it is clear that the effect of using the oriented space-ti
elements is to transform, on each si&bthe original problem with velocitg to a problem
resembling the original, but with small velociéy To this problem the method is applied
on a tensor—product mesh(K, t) coordinates without orientation, corresponding directly
to Eqg. (7). Through the space—time orientation, the convective term is thus effectiv
eliminated, which both improves the precision and facilitates the solution of the resi
ing discrete system. The drawback is that projections have to be performed at mest
changes.

Remark. The presented method directly extends to higher order approximations for
velocity, by using orf, an approximate velocitg” defined by

L=t \™
ch(x,t)=z( % 1) Cam(X).

m=0 n

wherechm(X) € [Vh]?, followed by solving (9) using an appropriate method. In this cas
the characteristics(X, t) are given by

o (t b

x(X,t) = X + ) Chm(X).
mgz:l m kn

5. COMPARISON WITH THE BONNEROT-JAMET SCHEME

The scheme used by Bonnerot and Jamet [2] was analyzed by Jamet [13] for the
equation in a particular one-dimensional case. Consider the problem of findsugh
that

au 92

2" =0 13
ot ax2 ’ (13)

forsy(t) < X < sp(t) withu(sy(t), t) = u(s(t), t) = 0 andu(x, 0) = u°(x). Dividing the spa-
tial domain into finite elements with nod)eﬁsuchthasl(t”) =xg<X'<---<X'=5(01"),
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the Bonnerot—Jamet scheme can be written: Find the seqfieHicguch that

1
2 {(Xun;rll - X|n+1l)un+1 — (= xg)ul}

1
- Z{(Xinfll — ") (u ufs + utyg) — (Xinjll —x"4) (Uin:L1l +ul )}

1 n+1 n n n+1 n+1
Ko ful, —ul  uM - u' —u uMt — u;
. i+1 i i+1 i i-1 i-1) _ 0 (14)

2 X|n+1 _ Xin Xin-:rll _ XinJrl Xin _ Xin—l Xin+1 _ Xin_+ll

with uf = u = 0 andu? = u®(x%) (see [2]). Comparing with the present approach, the me:
velocity implicit in (14) is given pointwise by
n+1

n

t”+1 tn ’

Ch(Xi (D) =

constant over the time step. Nou,= U |s, € W, is sought, such that

/90 a0 aU 92
— J| dX dt It =0, 15
/S1<8t ta ax) [l +/| ‘8X8X8t (15)

v € Wh. Consider now the case of a piecewise linear approximation in space and ti
Identifying X with x(t") and denoting by; (X) the hat function associated with node

X—x71
n
X1
|+1 —X

il
X|+1 X\

n n
XLy = X=X,

_?<

¢ (X) =

n
X' < X <Xy

one can set

i+1 £ t_tn
U (X, t)—Z¢,(X)< uttt 4 (1— . )u?) X< X <X,

j=i—-1

and to get an equation for noéleone may test witldd /9t = ¢; (X) on the same interval.
Next, the integrals in (15) must be evaluated on the elemeht$t of nodei andR right
of nodei. At nodei,

aU ney 90U aouMtt—un
o (et = e (61 = e
and, on the element level,
3U R (X tn+1) U.“Ill — un+1 JUR (X- tn) — uin+1 — uin
ax \v XN, —x axX XM, — X
aut (%, 171) = uttt gttt aut (%) = ur—ul
X XM —x", ax v X" —x"

The Jacobian of transformation can be written on the element level as

Ch(Xi+1(1)) — cn(X (t))

n
Xy — X

JR=1+@1—1t"
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so thatJR(X;,t") =1 and

Xin:lll_xinJrl _ Xin+1_xin X1 yntl
n+1_¢n n+1 _¢n q q
'JnR<Xi , tn+1> — 1+ (tn+1 _ tn) t '[n In t — |+nl i -
Xiyr =X Xiy1 =X
Similarly,
n+1 n+1
JL(X‘ tn+1) X X
n (] - x" — xn
i i—1
Further,
n+1 n
X = X!
~L(y. th) _ ~R(y. tn)y _ _ X 1
a (X,,t)—a (Xl,t)— T
and
Xn+1 —xN x" 0
&R(X' tn+l) _ _ A i i+1 i
i - n+1 _ tn n+1 n+1°’
t X1 =X

n+1 n n n
X=X XX

T ¥n+1 _tn Gntl ntic
t X" —x

at (Xi , tn+l) =
To obtain a scheme comparable to the Bonnerot—Jamet scheme, the integrals in (15
be evaluated using nodal quadrature on the space—time quadrilaterals. One then finds

a0 . uMtt —yp N 1
/& E(bi (X)JndX dt ~ % (s =Xy + XM = X)),

20 - 1
/ e (X)J,dX dt ~ -2 (xM —xM) (Ul — ul g+ Ul — M),
S
and
aU a¢i (X) 1
/ U360 L
g X X
oK fuly—ul Ut —uy upyy —utt 3 uptt —ufty
2 )(in_~_1 . Xin Xin _ Xin—l Xin:].l _ Xin+l Xin+1 _ Xin_+11

In conclusion, the new scheme can be written: Find the seqyefitsuch that

1
Z((Xinﬂ — XL X — Xin—Jrll)) (UinJrl —u)
1
L ) — ()

n n n+1 n+1 n n n+1 n+1
_kn<ui+l_ui Ut — Ui U —U—1 U —Ui—1> —0, (16)

n n n+1 n+1 ~ n n n+1 n+1
2\ X1 —X X1 — X% X=X X=X
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which is close, but not identical, to the Bonnerot—Jamet scheme (14). Note, however,

with X" =x", x" 1 =x"; = x" + h andx'} = x" ; = x" — h, one obtains

2 h2 h2

ut 1 ful - 2uh 4+, ul - 20
o 2 ' o

which is the Crank—Nicolson scheme.

6. PRACTICAL IMPLEMENTATION

In this section, the practical implementations of the method are discussed in the case
linear approximation in space and time. Clearly, the method can be put in a standard f
element format where the trial functions are isoparametrically mapped in space—time,
the test functions are superparametrically mapped. To simplify matters, consider ins
approximations written in the form

U=> (UM toix.t) + Ui (x. 1),

where the sum is taken over all of the nodes. Heyé, t) is chosen piecewise constant in
time along the deforming mesh, atitx, t) piecewise linear in time. Thub,* signifies the
increase in the solution along the deformed mesh, and consequEh#yU"~* + U*. In
the standard way, at tinte=t,_; an elementwise approximation is defined on the eleme
with local node coordinatesXy, Y1), (X2, Ys), and(Xz, Y3). With

A = X1Y2 — XoY1 + XoYz — X3Ys + XYy — X1Y3,
the shape functions can be written

@1 = (X2Y3 — X3Y2 + (Y2 — Y3)X =+ (X3 — Xz)Y)/A
@2 = (X3Y1 — X1Yz + (Y3 = YD X 4+ (X1 — X3)Y) /A
93 = (X1Y2 — XoY1 4+ (Y1 = Y2) X + (X2 — XpY) /A,
and &i = (t —th_1)@i / kn. By definition of the mappind-, Dhgi =0 and Dnvi = ¢j / kn.

Furthermore, sincH is taken as time-continuoud,"~* is the known solution at the begin-
ning of the time-step, and, on each space—time slab, the discrete problem can be writt

(M, +A)u* =f— Ap_u™

where(u*); = U, (u"1); =U

1
M,ij = ﬁ/&%wi dQ dt,
n

1

t—1t—
(Aij = —/ 7n1((c—ch)'V(Pj‘Pi + eV - Vyi) dQ dt,
kn S‘ kn

1
(An_pij = k*/ ((c—cn) - Vojeoi +eVej - Vi) dQdt,
nJs,
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and
1
) = _/ f g A2 .
kn S]

Note that, due to the definition &, ¢; is spatially continuous for atl, and ifc=c, both
A, andA, are symmetric matrices. Furthermore, the formulation of the discrete probl
is independent of the temporal approximation usedior

There now remains to compute the gradients of the shape functions according to (1

9 P X ) Y PPN
o I+ t—thDzy -ty %
do | ack acy 3 |’
dy t—tho)5e 1+ (-t v

which can be done analytically since= (c,’f, cﬁ) is a mesh function.

7. NUMERICAL EXAMPLES

7.1. Diffusion on a Deforming Grid

Consider the diffusion equation,

in 2=(0,1) x (0,1), u=00na. The diffusion problem is solved on a deforming grid,
with mesh velocity

c(X) = 100(—(Y — 1/2)(1 — X)X(1 = Y)Y, (X — 1/2)(1 — X)X (L — Y)Y,

so that the velocity is associated with nodes rather than with the nodal positions on
deformed mesh. The computational mesh is shown in Fig. 1. The initial solution w
u® =1+ cogd4nr) if r < 1/4, u® =0 elsewhere, wheme= ((x — 1/2)? + (y — 1/2)%)%/2.

FIG. 1. Initial mesh and maximally deformed mesh.
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0.35 — N\
0.3 — \
0.25 — // \\\
. (AN
0.1 — Z N7 ")VV‘S “‘ﬁ\\

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 2. Solution on a fixed and on a deforming mesh.

This problem was solved over the time spaa- (0, 0.1) using 1, 2, 4, 8, and 16 time steps,
and the “exact” solution was obtained using 60 time steps. Elevations of the solution
given for a fixed mesh computation and a computation on the deforming mesh in Fig 2,
the convergence behaviors on the fixed and deforming meshes are shown in Fig. 3.

e Deforming mesh
- == Fixed mesh

Log of root-mean-square error

Log of timestep size

FIG. 3. Convergence rates on the fixed and deforming meshes.
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6 E— Velocity by Heun’s method q
- == Velocity at beginning of time step

Log of root-mean-square error

| 1 | | 1 | 1 | |
-9 -8 -7 -6 -5 -4 -3 -2 -1
Log of time step size

FIG. 4. Convergence for convection—diffusion on a deforming mesh.

7.2. Convection—Diffusion on a Deforming Grid

This problem is similar to the previous example, the difference being that there is r

also a convective term:

au 1

— +c-Vu—-=Vau=0.

ot + 5
The domain, boundary conditions, and initial solution are the same as in Example 7.1.
same number of time steps was taken, and the exact solution was obtained in the same
Now, however, the velocity field was given by

c(x) = 100(—(y — 1/2)(1 = )x(1 = y)y. (X = 1/2)(1 = )x(1 = X)X,

FIG. 5. Initial cosine hill for convection problem.
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FIG. 6. Solutions after one rotation using the midpoint rule (left) and trapezoidal rule (right) for the tempo
integration of the finite element matrices.

defined by the position in space, rather than associated with the nodes. This problen
solved using two different definitions of, one obtained taking the spatial interpolant o
the velocity at the beginning of each time step and the other using Heun’s method (8
order to preserve the second-order convergence behavior, the second choice is cruc
seen in Fig. 4.

7.3. Convection on a Deforming Grid

In this example, the influence of the temporal integration procedure upon accurac
shown. The problem is in a sense dual to the previous example: the mesh rotates
the exact velocity (corresponding to solving for the characteristics exactly), whereas
convective velocityn the equatioris being evaluated numerically.

FIG. 7. Solution after one rotation using two-point Gaussian quadraure for the temporal integration of
finite element matrices.
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With the origin in the center of a unit disc, amd= (x? + (y — 1/2)%)¥?, the initial
solution isu=1+ cos 4rr forr <0.22, u=0 elsewhere. This hill is being convected in
a flowfield c= (—y, x), and the number of time-steps used to complete one full rotatic
is N =16. In Fig. 5, the initial solution and the computational mesh is shown. In Fig.
the solution after one rotation using the midpoint rule (left) and the trapeziodal rule (rig
for the temporal integration of the finite element matrices are shown. With such a sn
number of time steps, these second-order accurate time integration schemes clearly c
suffice to give an accurate answer (a first-order accurate integration method would just
noise). Finally, in Fig. 7, two Gauss points have been used, and the solution is very clos
the initial. This serves to show that the mesh velocity and the velocity in the equation
separate things. Both have to be evaluated to second-order accuracy in order to achie
right asymptotics, which explains the convergence behavior in Example 7.2.

8. CONCLUDING REMARKS

In this paper, a variant of the continuous finite element method of Aziz and Monk |
suitable for computation on deforming meshes has been introduced. The method i
extension of the Crank—Nicolson method, and computational experience confirms tha
method retains the second-order temporal accuracy of the Crank—Nicolson method.
exact conditions necessary for second order accuracy with regards to the deformatic
the mesh remains to be investigated.

The interest in space—time finite element methods for flows in deforming domain:
motivated by the fact that it allows for mimicking the use of Lagrangian coordinates withc
introducing actual differencing along the characteristics. This means that if the velo
field used to convect the mesh is different from the actual velocity field (which is the us
situation), there will remain a small residual convective term. The resulting nonsymme
of the corresponding matrix problem is the price paid for consistency; our method will we
also ifitis difficult to align the mesh along the characteristics. Furthermore, by coupling 1
approximation of the solution to the approximation of the flow field, there is an immedic
gain when the method is applied to nonlinear flow problems where the flow field is identi
to the solution, as, e.g., in the Navier—Stokes equations. Clearly, in such a case the res
convective term becomes identical to zero by definition, whigtomaticallyreduces (the
discretized) Navier—Stokes to Stokes without further approximations, cf. [7, 8].
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