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In this paper, a space–time finite element method for evolution problems that
is second-order accurate in both space and time is proposed. For convection domi-
nated problems, the elements may be aligned along the characteristics in space–time,
which results in a Crank–Nicolson method along the characteristics. The method is
also suitable as an alternative to other moving mesh methods for problems in de-
forming domains. Numerical examples dealing with diffusion and convection are
given. c© 2000 Academic Press
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1. INTRODUCTION

In previous work [6–9], I have suggested the use of a space–time finite element method for
convection–diffusion problems based on a time-Discontinuous Galerkin (DG) method of
Jamet [12]. This version of the DG method, known as the Characteristic Streamline Diffusion
(CSD) method, consists of aligning the element sides along the characteristic directions in
space–time. It has been shown to have some good points from both a theoretical [14] and a
practical [6] point of view. For an introduction to the CSD method, see the monograph [5,
Chapter 19]. Essentially the same method has been independently proposed by Tezduyar
and coworkers, who have used this approach in large-scale computations (see, e.g., [17, 18]).

However, the CSD method has a drawback: the use of the lowest possible order of temporal
approximation leads to a variant of the backward Euler method along the characteristic
direction, meaning that it is only a first-order method. While a first-order method along
the characteristics may outperform a standard high-order method in many cases, it is in a
general situation insufficient. Higher order polynomial approximation, leading to variants
of the first subdiagonal Pad´e approximants, is prohibitively expensive to use. For this reason
I instead suggest the use of continuous Galerkin methods, which are related to the diagonal
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Padé approximants. I shall focus on the lowest-order continuous Galerkin method, which
is a Crank–Nicolson-type method, i.e., a one-step method of second order.

It must be noted that, while the exposition of the method relies heavily on the notion of
characteristics, the method is not limited to convection–diffusion-type problems. It is also
suited to handling problems requiring deforming regions (e.g., large deformation problems,
arbitrary Lagrangian–Eulerian problems, Stefan problems, flow problems with moving
parts, and interface tracking in general). The movement of the mesh does not have to be
connected to a physical velocity field.

Second-order time-accurate space–time finite element methods on moving meshes have
been proposed earlier by Bonnerot and Jamet [2, 3]. Their approach is close to the one
presented here in special cases; however, as far as I am aware, this is the first attempt at a
general approach which is independent of quadrature and allows for higher order approxi-
mations of both the mesh movement velocity and the polynomial degree of approximation
in both space and time.

An outline of this paper is as follows: in Section 2 a linear model problem is introduced,
with the purpose of defining the method and its qualities. In Section 3, the space–time finite
element method introduced by Aziz and Monk [1] for the solution of the heat equation is
recalled. In Section 4 the method is defined and the effects of space–time orientation of the
elements are discussed. In Section 6 the practical implementation is discussed. In Section 7
some numerical examples are presented, and in Section 8 some concluding remarks are
given.

2. PROBLEM FORMULATION

While the present method is applicable to any type of evolution problem, I will, for the
purpose of introduction, focus on the linear convection–diffusion problem. The reason for
this is simply that the question of how to move the nodes is not an issue in this case; the
natural choice is to let them move with the flow. For other problems, nodal motion may
be an issue in itself, cf. [9]. Convection–diffusion also displays some of the computational
difficulties encountered in more complex flow problems.

Consider thus first the numerical solution of the following model problem:

∂u

∂t
+ c · ∇u−∇ · (ε∇u) = f in Q ≡ Ä× I ,

u = 0 on∂Ä× I ,
u(x, 0) = u0 in Ä,

 (1)

whereÄ is a polygonal domain inR2 with boundary∂Ä, I = (0, T) is a given time interval,
andcandε >0 are functions of (x, t) representing a given convection velocity and diffusion
coefficient, respectively. To avoid the complications associated with time-variable space
domain, it is also assumed that

c= 0 on∂Ä. (2)

(This is not a limitation of the method, however; for computations with moving boundaries
using CSD, see, e.g., [7, 8].) Further,f (x, t) is a given production term andu0 is given
initial data.
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Equation (1) is written in Eulerian coordinates(x, t), wherex refers to a certain fixed
location inR2 and t is time. In Eulerian coordinates,u(x, t) is the concentration at the
space–time location (x, t) of a certain quantity convected by the velocity fieldc(x, t). Using
Eulerian coordinates, observers are fixed at pointsx in R2 and measure the concentration
or velocity atx for different timest . Most of the work done in the field of computational
fluid dynamics is based on the use of Eulerian coordinates, but to understand the benefits
of the space–time orientation along the characteristics it is helpful to consider instead the
Lagrangian coordinates associated with the physics of problem (1).

The characteristics corresponding to thematerial derivative,

∂

∂t
+ c · ∇,

in (1) are space–time curves(x, t)= (x(X, t), t), wherex(X, t) satisfies

∂x
∂t
= c(x(X, t), t) t > 0,

x(X, 0) = X.

 (3)

The coordinatesx are the Eulerian coordinates andX are the Lagrangian coordinates, where
X acts as a label identifying a particle which at timet = 0 is at locationX ∈ R2 and moves
according to the velocity fieldc(x(X, t), t) so that its position at timet is given byx(X, t).
Alternatively, one may simply writex= F(X, t), where it is understood that the mapping
F is given implicitly by (3).

Notice that, defininḡu(X, t) ≡ u(x(X, t), t), by (3) and the chain rule,

∂ū

∂t
= ∂u

∂t
+ c · ∇u. (4)

Thus, the convection equation,

∂u

∂t
+ c · ∇u = f, (5)

in the Eulerian coordinatesx, corresponding to takingε= 0 in (1), takes the simple form,

∂ū

∂t
= f̄ , (6)

in the Lagrangian coordinates(X, t), where f̄ (X, t)= f (x(X, t), t). Consequently, in global
Lagrangian coordinates the convection term disappears and the original partial differential
equation (5) reduces to a set of first-order ordinary differential equations with respect to
t indexed byX. This fact is the driving force behind many numerical schemes for fluid
mechanics problems. Most methods use the characteristics in an indirect manner, while
others, like the finite element method to be presented, are more directly linked to (6).
Other examples of a direct incorporation of characteristics include the methods proposed
by Pironneau [16] and by Hasbaniet al. [10] and also the characteristic Galerkin method
of Morton [15] and the semi-Lagrangian method of Cˆoté and Staniforth [4]. A difference
between these methods and the continuous Galerkin method is that the latter is based on a
finite element discretization of both space and time, while the former methods are based on
finite difference stencils along the characteristics that do not a priori take into account the
fact that the characteristics may only be approximate.



CRANK–NICOLSON TYPE SPACE–TIME FEM 277

3. THE TIME-CONTINUOUS GALERKIN METHOD

First, the method will be described using a traditional nonoriented space–time mesh.
For discretization in space and time, a continuous Galerkin method in space is employed
in combination with a continuous method in time using an arbitrary polynomial order.
The temporal variation of the test functions will be one order lower than that of the trial
functions so that if a trial function is denotedv, the corresponding test function can be
writtenw= ∂v/∂t . Aziz and Monk [1] were the first to analyze this method for parabolic
partial differential equations. However, the concept has been used earlier by a number of
authors (see, e.g., Hulme [11], Winther [19], and Zienkiewicz [20, Chapter 21.2]).

Attention will be focused on the simplest possible variant using a linear approximation
in both space and time in two dimensions, but the framework allows for an arbitrary order
of approximation. The method is based on a partition 0= t0< t1< · · · < tN = T of the total
time interval (0, T) into smaller time intervals,In= (tn−1, tn), of lengthkn= tn− tn−1. It is
assumed that there is given a fixed subdivisionTh of Ä into triangles, and the spaceVh is
then defined by

Vh(Ä)={v ∈ C(Ǟ): v is linear inx on each triangleK in Th, v= 0 on∂Ä}.
The corresponding space–time mesh onÄ× (0, T) is built from space–time “slabs”Sn=

Ä× In. Approximate solutionsU which are continuous, piecewise linear in space and time
are sought. This means thatU |Ä× In belongs to the following space of functions defined on
the slabSn:

Whn(Sn) = {v(x, t): v is linear in time andv ∈Vh for t fixed}.
The space of functionsv defined on the whole of the space–time domain is denoted byWh;
i.e.,

Wh(Q) = {v ∈ C(Q̄) : v|Sn ∈Whn}.
The method proposed in [1] may be formulated as follows: forn= 1, 2, . . . , findU ∈Whn

such that∫
Sn

(
∂U

∂t
+ c · ∇U

)
∂v

∂t
dÄ dt +

∫
Sn

ε∇U · ∇
(
∂v

∂t

)
dÄ dt =

∫
Sn

f
∂v

∂t
dÄ dt (7)

for all v ∈ Whn.
Now, in spite of the fact thatU is continuous in time, it is computed stepwise in the

same way as in a one-step finite difference method. To ensure the temporal continuity ofU ,
the valueU (tn−1) is taken from the preceding time step (withU0 a suitable interpolation
of the initial data onto the mesh). This means that there is only one unknown in time, the
value at the end of the time step. Since there is in fact only one test function in time(∂v/∂t
is constant), the right number of equations is obtained. The resulting scheme is closely
related to the classic Crank–Nicolson method (using a particular temporal mean value for
the right-hand side; see [1] for details).

4. THE SPACE–TIME-ORIENTED CHARACTERISTIC METHOD

Next, the space–time mesh will be defined; a piecewise linear approximation will be used
along space–time characteristics (and in space). The purpose of the space–time orientation
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is to mimic the use of Lagrangian coordinates. Traditionally, one simply replaces the actual
c by an approximationch, followed by computing the convective derivative by differenc-
ing alongch. This means that the numerical solution is by definition convected bych, so
that, in effect, the original equation has been changed, and a consistency error has been
introduced. In the present method, on the other hand, the space–time elements are de-
formed according toch, which has a similar effect, but it is the original equation that is dis-
cretized. Thus, there will be no consistency error due to the approximation of the convective
velocity.

4.1. Definition of the Method

Recall the definition of the global Lagrangian coordinates in (3) and the corresponding
mapx= F(X, t). Let us, for ease of presentation, assume that this map is a bijection for all
t ∈ I . One can then proceed as follows: denote byQ̂= Ä̂× Î the image ofÄ× I under
F−1, divide Q̂ into slabsŜn and let the spacesVh(Ä̂),Whn(Ŝn), andWh(Q̂) be defined as
in the previous section.

For simplicity, I consider only the case whench ∈ [Vh(Ä̂)]2 is piecewise constant in time.
The numerical examples of Section 7 show that the choice ofch affects the accuracy of the
resulting scheme.A priori the nodal positions are known only at the beginning of the time
step, but the choice ofch as the spatial interpolant ofc at the beginning of the time step is
not sufficient to ensure second-order temporal accuracy. As the mesh deforms, the nodes
will occupy new positionsx0, x1, . . . , so it is natural to define, on each space–time slab, a
local Lagrangian coordinateXn≡ xn−1. A second-order approximation of the deformation
x(t) is given by Heun’s method; define

x̃n = Xn + knc(Xn, tn−1)

and computexn by

xn = Xn + kn

2
(c(Xn, tn−1)+ c(x̃n, tn)).

Consequently, a natural choice forch(Xn) is the spatial interpolant of the velocity field

c̃(Xn) = (c(Xn, tn−1)+ c(x̃n, tn))/2, (8)

constant over each time step.
To proceed, define on each slab the corresponding local Eulerian coordinatexn as the

solution of

∂xn

∂t
= ch(Xn) on Î n,

xn(Xn, tn−1) = Xn,

 (9)

so that

xn = Xn + ch(Xn)(t − tn−1),

and denote the corresponding mapping byFn : Ŝn→ Sn ≡ Fn(Ŝn). The space of functions
in which the approximate solution of (1) is sought is then defined by composition withF−1

n ,
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so that

Wch
hn(Sn) =

{
v(x, t) = v̂(F−1

n (x, t)
)

: v̂ ∈ Whn(Ŝn)
}

and

Wch
h (Q) =

{
v ∈ C(Q̄) : v|Sn ∈ Wch

hn

}
.

The method based on the spaceWch
h can now be formulated as follows: FindU ∈Wch

h

such that forn= 1, 2, . . . ,∫
Sn

(
∂U

∂t
+ c · ∇U

)
Dhv dÄ dt +

∫
Sn

ε∇U · ∇(Dhv) dÄ dt =
∫

Sn

f Dhv dÄ dt (10)

for all v ∈Wch
h , where

Dhv ≡ ∂v

∂t
+ ch · ∇v

denotes the approximate material derivative ofv. Again, note that this effectively yields
only one test function, sinceDhv is constant alongch, and consequently (10) is the natural
counterpart to (7). It is important to note that the same idea can be used foranychoice ofch,
and the method is thus possible to use also on moving grids for other applications (interface
tracking, ALE methods, etc.).

The space–time mesh corresponding to the approximative convective velocity consists
of elements that are inclined in space–time with slope given by the velocitych. Depending
on the regularity of the velocity fieldc, it is possible to maintain matching meshes over a
certain length of time, until the mesh is so distorted that this is no longer feasible. When
the mesh becomes too distorted, a new triangulation ofÄ must be introduced, and anL2-
projection from the old to the new mesh must be performed. Since a second-order temporal
accuracy is expected, this may be bad news: too many projections will reduce the order of
approximation. However, given some regularity ofc, the same number of projectionsper
unit timeis expected as the time-step length is reduced, which still yields the right asymptotic
behavior. This is unlike the traditional characteristics-based finite element methods, where
one projection is performed each time step (e.g., [16]).

4.2. Effects of Space–Time Orientation

Next, (10) is rewritten in the local Lagrangian coordinates onSn to see the effect of the
orientation. Extendingch to Sn by settingch(x, t)= ch(X) if x= Fn(X, t), the chain rule
yields

∂v

∂t
+ c · ∇v = ∂v

∂t
+ ch · ∇v + (c− ch) · ∇v

= ∂v̂

∂t
+ (ĉ− ĉh) · J−1

n ∇xv̂ ≡ ∂v̄

∂t
+ α̂ · ∇xv̂, (11)

where

Jn(X, t) = ∂x
∂X
(X, t)
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and

α̂ = J−T
n (ĉ− ĉh).

With ch selected according to (8), one may expect to have ˆα≤C(k2
n+ h2

n) if c is smooth.
Reformulating (10) in (X, t) coordinates the method takes the following form: Forn=
1, 2, . . . , find Û ≡ Û |Sn ∈ Ŵh such that∀v̂ ∈ Ŵh,

∫
Sn

(
∂Û

∂t
+ α̂ · ∇xÛ

)
∂v̂

∂t
|Jn| dÄ̂ dt

+
∫

Sn

ε̂∇̂U · ∇̂
(
∂v̂

∂t

)
|Jn| dÄ̂ dt =

∫
Sn

f̂
∂v̂

∂t
|Jn| dÄ̂ dt, (12)

where∇̂ = J−1
n ∇x.

Comparing (10) and (12), it is clear that the effect of using the oriented space–time
elements is to transform, on each slabSn, the original problem with velocityc to a problem
resembling the original, but with small velocity ˆα. To this problem the method is applied
on a tensor–product mesh in(X, t) coordinates without orientation, corresponding directly
to Eq. (7). Through the space–time orientation, the convective term is thus effectively
eliminated, which both improves the precision and facilitates the solution of the result-
ing discrete system. The drawback is thatL2 projections have to be performed at mesh
changes.

Remark. The presented method directly extends to higher order approximations for the
velocity, by using onSn an approximate velocitych defined by

ch(X, t) =
r∑

m=0

(
t − tn−1

kn

)m

chm(X),

wherechm(X) ∈ [Vh]2, followed by solving (9) using an appropriate method. In this case
the characteristicsx(X, t) are given by

x(X, t) = X +
r+1∑
m=1

kn

m

(
t − tn−1

kn

)m

chm(X).

5. COMPARISON WITH THE BONNEROT–JAMET SCHEME

The scheme used by Bonnerot and Jamet [2] was analyzed by Jamet [13] for the heat
equation in a particular one-dimensional case. Consider the problem of findingu such
that

∂u

∂t
− ∂

2u

∂x2
= 0, (13)

for s1(t)< x< s2(t)with u(s1(t), t)= u(s2(t), t)= 0 andu(x, 0)= u0(x). Dividing the spa-
tial domain into finite elements with nodesxn

j such thats1(tn)= xn
0 < xn

I < · · ·< xn
I = s2(tn),
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the Bonnerot–Jamet scheme can be written: Find the sequence{un
i } such that

1

2

{(
xn+1

i+1 − xn+1
i−1

)
un+1− (xn

i+1− xn
i−1

)
un

i

}
− 1

4

{(
xn+1

i+1 − xn
i+1

)(
un+1

i+1 + un
i+1

)− (xn+1
i−1 − xn

i−1

)(
un+1

i−1 + un
i−1

)}
− kn

2

(
un

i+1− un
i

xn
i+1− xn

i

+ un+1
i+1 − un+1

i

xn+1
i+1 − xn+1

i

− un
i − un

i−1

xn
i − xn

i−1
− un+1

i − un+1
i−1

xn+1
i − xn+1

i−1

)
= 0, (14)

with un
0= un

I = 0 andu0
i = u0(x0

i ) (see [2]). Comparing with the present approach, the mesh
velocity implicit in (14) is given pointwise by

ch(xi (t)) = xn+1
i − xn

i

tn+1− tn
,

constant over the time step. Now,Û ≡ Û |Sn ∈ Ŵh is sought, such that∫
Sn

(
∂Û

∂t
+ α̂ ∂Û

∂X

)
∂v̂

∂t
|Jn| dX dt +

∫
Sn

∣∣J−1
n

∣∣∂Û
∂X

∂2v̂

∂X∂t
dX dt = 0, (15)

∀v̂ ∈ Ŵh. Consider now the case of a piecewise linear approximation in space and time.
Identifying X with x(tn) and denoting bŷφi (X) the hat function associated with nodei ,

φ̂i (X) =


X−xn

i−1

xn
i −xn

i−1
xn

i−1 ≤ X ≤ xn
i ,

xn
i+1−X

xn
i+1−xn

i
xn

i ≤ X ≤ xn
i+1,

one can set

Û (X, t) =
i+1∑

j=i−1

φ̂ j (X)

(
t − tn

kn
un+1

j +
(

1− t − tn

kn

)
un

j

)
xn

i−1 ≤ X ≤ xn
i+1,

and to get an equation for nodei , one may test with∂v̂/∂t = φ̂i (X) on the same interval.
Next, the integrals in (15) must be evaluated on the elementsL left of nodei andR right
of nodei . At nodei ,

∂Û

∂t

(
Xi , t

n+1
) = ∂Û

∂t

(
Xi , t

n
) = un+1

i − un
i

tn+1− tn
,

and, on the element level,

∂Û R

∂X

(
Xi , t

n+1
) = un+1

i+1 − un+1
i

xn
i+1− xn

i

,
∂Û R

∂X

(
Xi , t

n
) = un

i+1− un
i

xn
i+1− xn

i

.

∂Û L

∂X

(
Xi , t

n+1
) = un+1

i − un+1
i−1

xn
i − xn

i−1
,

∂Û L

∂X

(
Xi , t

n
) = un

i − un
i−1

xn
i − xn

i−1
.

The Jacobian of transformation can be written on the element level as

J R
n = 1+ (t − tn)

ch(xi+1(t))− ch(xi (t))

xn
i+1− xn

i

,
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so thatJ R
n (Xi , tn)= 1 and

J R
n

(
Xi , t

n+1
) = 1+ (tn+1− tn)

xn+1
i+1 − xn

i+1

tn+1−tn − xn+1
i − xn

i
tn+1− tn

xn
i+1− xn

i

= xn+1
i+1 − xn+1

i

xn
i+1− xn

i

.

Similarly,

JL
n

(
Xi , t

n+1
) = xn+1

i − xn+1
i−1

xn
i − xn

i−1
.

Further,

α̂L
(
Xi , t

n
) = α̂R

(
Xi , t

n
) = −xn+1

i − xn
i

tn+1− tn
,

and

α̂R
(
Xi , t

n+1
) = −xn+1

i − xn
i

tn+1− tn

xn
i + 1− xn

i

xn+1
i+1 − xn+1

i

,

α̂L
(
Xi , t

n+1
) = −xn+1

i − xn
i

tn+1− tn

xn
i − xn

i−1

xn+1
i − xn+1

i−1

.

To obtain a scheme comparable to the Bonnerot–Jamet scheme, the integrals in (15) will
be evaluated using nodal quadrature on the space–time quadrilaterals. One then finds that

∫
Sn

∂Û

∂t
φ̂i (X)Jn dX dt ≈ un+1

i − un
i

4

((
xn

i+1− xn
i−1+ xn+1

i+1 − xn+1
i−1

))
,∫

Sn

α̂
∂Û

∂X
φ̂i (X)Jn dX dt ≈ −1

4

(
xn+1

i − xn
i

)(
un

i+1− un
i−1+ un+1

i+1 − un+1
i−1

)
,

and ∫
Sn

∂Û

∂X

∂φ̂i (X)

∂X

1

Jn
dXdt

≈ −kn

2

(
un

i+1− un
i

xn
i+1− xn

i

− un
i − un

i−1

xn
i − xn

i−1
+ un+1

i+1 − un+1
i

xn+1
i+1 − xn+1

i

− un+1
i − un+1

i−1

xn+1
i − xn+1

i−1

)
.

In conclusion, the new scheme can be written: Find the sequence{un
i } such that

1

4

((
xn

i+1− xn
i−1+ xn+1

i+1 − xn+1
i−1

))(
un+1

i − un
i

)
− 1

4

(
xn+1

i − xn
i

){(
un+1

i+1 + un
i+1

)− (un+1
i−1 + un

i−1

)}
− kn

2

(
un

i+1− un
i

xn
i+1− xn

i

+ un+1
i+1 − un+1

i

xn+1
i+1 − xn+1

i

− un
i − un

i−1

xn
i − xn

i−1
− un+1

i − un+1
i−1

xn+1
i − xn+1

i−1

)
= 0, (16)
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which is close, but not identical, to the Bonnerot–Jamet scheme (14). Note, however, that
with xn+1

i = xn
i , xn+1

i+1 = xn
i+1 = xn

i + h andxn+1
i−1 = xn

i−1= xn
i − h, one obtains

un+1− un

kn
− 1

2

(
un

i+1− 2un
i + un

i−1

h2
+ un+1

i+1 − 2un+1
i + un+1

i−1

h2

)
= 0,

which is the Crank–Nicolson scheme.

6. PRACTICAL IMPLEMENTATION

In this section, the practical implementations of the method are discussed in the case of a
linear approximation in space and time. Clearly, the method can be put in a standard finite
element format where the trial functions are isoparametrically mapped in space–time, and
the test functions are superparametrically mapped. To simplify matters, consider instead
approximations written in the form

U =
∑

i

(
Un−1

i ϕi (x, t)+U ∗i ψi (x, t)
)
,

where the sum is taken over all of the nodes. Here,ϕi (x, t) is chosen piecewise constant in
time along the deforming mesh, andψi (x, t) piecewise linear in time. Thus,U ∗ signifies the
increase in the solution along the deformed mesh, and consequentlyUn

i =Un−1
i +U ∗i . In

the standard way, at timet = tn−1 an elementwise approximation is defined on the element
with local node coordinates(X1,Y1), (X2,Y2), and(X3,Y3). With

1 = X1Y2− X2Y1+ X2Y3− X3Y2+ X3Y1− X1Y3,

the shape functions can be written

ϕ̂1 = (X2Y3− X3Y2+ (Y2− Y3)X + (X3− X2)Y)/1

ϕ̂2 = (X3Y1− X1Y3+ (Y3− Y1)X + (X1− X3)Y)/1

ϕ̂3 = (X1Y2− X2Y1+ (Y1− Y2)X + (X2− X1)Y)/1,

and ψ̂ i = (t − tn−1)ϕ̂i /kn. By definition of the mappingF, Dhϕi = 0 andDhψi =ϕi /kn.
Furthermore, sinceU is taken as time-continuous,Un−1 is the known solution at the begin-
ning of the time-step, and, on each space–time slab, the discrete problem can be written

(M ∗ + A∗)u∗ = f − An−1un−1,

where(u∗)i =U ∗i , (u
n−1)i =Un−1

i ,

(M ∗)i j = 1

k2
n

∫
Sn

ϕ jϕi dÄ dt,

(A∗)i j = 1

kn

∫
Sn

t − tn−1

kn
((c− ch) · ∇ϕ jϕi + ε∇ϕ j · ∇ϕi ) dÄ dt,

(An−1)i j = 1

kn

∫
Sn

((c− ch) · ∇ϕ jϕi + ε∇ϕ j · ∇ϕi ) dÄ dt,
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and

(f )i = 1

kn

∫
Sn

f ϕi dÄ dt.

Note that, due to the definition ofF, ϕi is spatially continuous for allt , and ifc= ch both
A∗ andAn are symmetric matrices. Furthermore, the formulation of the discrete problem
is independent of the temporal approximation used forch.

There now remains to compute the gradients of the shape functions according to (11),

 ∂ϕ

∂x

∂ϕ

∂y

 =
1+ (t − tn−1)

∂cX
h

∂X (t − tn−1)
∂cY

h

∂X

(t − tn−1)
∂cX

h

∂Y 1+ (t − tn−1)
∂cY

h

∂Y


−1 ∂ϕ̂

∂X

∂ϕ̂

∂Y

,
which can be done analytically sincech= (cX

h , c
Y
h ) is a mesh function.

7. NUMERICAL EXAMPLES

7.1. Diffusion on a Deforming Grid

Consider the diffusion equation,

∂u

∂t
− 1

5
∇2u = 0,

in Ä= (0, 1)× (0, 1), u= 0 on∂Ä. The diffusion problem is solved on a deforming grid,
with mesh velocity

c(X) = 100(−(Y − 1/2)(1− X)X(1− Y)Y, (X − 1/2)(1− X)X(1− Y)Y,

so that the velocity is associated with nodes rather than with the nodal positions on the
deformed mesh. The computational mesh is shown in Fig. 1. The initial solution was
u0= 1+ cos(4πr ) if r ≤ 1/4, u0= 0 elsewhere, wherer = ((x − 1/2)2+ (y− 1/2)2)1/2.

FIG. 1. Initial mesh and maximally deformed mesh.
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FIG. 2. Solution on a fixed and on a deforming mesh.

This problem was solved over the time spanT = (0, 0.1) using 1, 2, 4, 8, and 16 time steps,
and the “exact” solution was obtained using 60 time steps. Elevations of the solution are
given for a fixed mesh computation and a computation on the deforming mesh in Fig 2, and
the convergence behaviors on the fixed and deforming meshes are shown in Fig. 3.

FIG. 3. Convergence rates on the fixed and deforming meshes.
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FIG. 4. Convergence for convection–diffusion on a deforming mesh.

7.2. Convection–Diffusion on a Deforming Grid

This problem is similar to the previous example, the difference being that there is now
also a convective term:

∂u

∂t
+ c · ∇u− 1

5
∇2u = 0.

The domain, boundary conditions, and initial solution are the same as in Example 7.1. The
same number of time steps was taken, and the exact solution was obtained in the same way.
Now, however, the velocity field was given by

c(x) = 100(−(y− 1/2)(1− x)x(1− y)y, (x − 1/2)(1− x)x(1− x)x,

FIG. 5. Initial cosine hill for convection problem.
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FIG. 6. Solutions after one rotation using the midpoint rule (left) and trapezoidal rule (right) for the temporal
integration of the finite element matrices.

defined by the position in space, rather than associated with the nodes. This problem was
solved using two different definitions ofch, one obtained taking the spatial interpolant of
the velocity at the beginning of each time step and the other using Heun’s method (8). In
order to preserve the second-order convergence behavior, the second choice is crucial, as
seen in Fig. 4.

7.3. Convection on a Deforming Grid

In this example, the influence of the temporal integration procedure upon accuracy is
shown. The problem is in a sense dual to the previous example: the mesh rotates with
the exact velocity (corresponding to solving for the characteristics exactly), whereas the
convective velocityin the equationis being evaluated numerically.

FIG. 7. Solution after one rotation using two-point Gaussian quadraure for the temporal integration of the
finite element matrices.
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With the origin in the center of a unit disc, andr = (x2 + (y − 1/2)2)1/2, the initial
solution isu= 1+ cos 4πr for r ≤ 0.22, u= 0 elsewhere. This hill is being convected in
a flowfield c= (−y, x), and the number of time-steps used to complete one full rotation
is N= 16. In Fig. 5, the initial solution and the computational mesh is shown. In Fig. 6,
the solution after one rotation using the midpoint rule (left) and the trapeziodal rule (right)
for the temporal integration of the finite element matrices are shown. With such a small
number of time steps, these second-order accurate time integration schemes clearly do not
suffice to give an accurate answer (a first-order accurate integration method would just yield
noise). Finally, in Fig. 7, two Gauss points have been used, and the solution is very close to
the initial. This serves to show that the mesh velocity and the velocity in the equation are
separate things. Both have to be evaluated to second-order accuracy in order to achieve the
right asymptotics, which explains the convergence behavior in Example 7.2.

8. CONCLUDING REMARKS

In this paper, a variant of the continuous finite element method of Aziz and Monk [1]
suitable for computation on deforming meshes has been introduced. The method is an
extension of the Crank–Nicolson method, and computational experience confirms that the
method retains the second-order temporal accuracy of the Crank–Nicolson method. The
exact conditions necessary for second order accuracy with regards to the deformation of
the mesh remains to be investigated.

The interest in space–time finite element methods for flows in deforming domains is
motivated by the fact that it allows for mimicking the use of Lagrangian coordinates without
introducing actual differencing along the characteristics. This means that if the velocity
field used to convect the mesh is different from the actual velocity field (which is the usual
situation), there will remain a small residual convective term. The resulting nonsymmetry
of the corresponding matrix problem is the price paid for consistency; our method will work
also if it is difficult to align the mesh along the characteristics. Furthermore, by coupling the
approximation of the solution to the approximation of the flow field, there is an immediate
gain when the method is applied to nonlinear flow problems where the flow field is identical
to the solution, as, e.g., in the Navier–Stokes equations. Clearly, in such a case the residual
convective term becomes identical to zero by definition, whichautomaticallyreduces (the
discretized) Navier–Stokes to Stokes without further approximations, cf. [7, 8].
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